If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2+4k-10=0
a = 1; b = 4; c = -10;
Δ = b2-4ac
Δ = 42-4·1·(-10)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{14}}{2*1}=\frac{-4-2\sqrt{14}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{14}}{2*1}=\frac{-4+2\sqrt{14}}{2} $
| k^2+4k=10 | | -16t^2+96t+5=133 | | 5x+0(1-x)=8x-1-x | | 133=-16^2+96t+5 | | 5x=8x-1-x | | 5x+1=8x-41 | | 8x-41+5x-1=360 | | 8x-41+5x-1=180 | | (X-1)(x-1)=504 | | -44+2y=-10-15y | | -44+10=-10-15y | | 4x+28+11x-1=10 | | 4x+28+11x-1+85=360 | | 4x+28+11x-1=170 | | 3x+.25x=450 | | 320=-2-14x | | 4x+28+11x-1+95=180 | | 3/2x^2=48 | | 3.2z=9.6 | | 4/2x+1/6=8/3x-2 | | 0.000623=(0.1+x)x | | 5x2+25x=5x | | -44+2y=-6-9y | | 00x=250 | | (x/6)-(x-2)/2=(x-13)9 | | x-46=72 | | 29-7n=17+5n | | y+81=112 | | x-78=99 | | y+21=33 | | x-58=221 | | y+45=67 |